

Istituto Nazionale di Fisica Nucleare

Biological effects of ionizing radiation

R. Zarrella

IPPOG-INFN International Particle Therapy Masterclass

Cancer in pills

Estimated number of new cases in 2020, all cancers, both sexes, all ages

Radiation treatment

First idea at the end of XIX century:

- Roentgen-therapy
- Radium salt applications/baths

But what does it mean to "treat" cancer with radiations?

Radiation damage

How does radiation damage cells? **Ionization** \rightarrow break molecular bonds in DNA

DNA damage

Direct DNA damage

DNA is found in cell nucleus and mitochondria

Different types of direct damage

Usually only SSB is repairable

Indirect damage

Free radicals are the main responsible for ionizing radiation damage to biological tissues

Absorbed dose

How do we measure radiation exposure? Absorbed Dose

$$D = \frac{dE}{dm} \longrightarrow [D] = 1Gy = \frac{1J}{1kg}$$

Radiotherapy treatment dose distribution

Energy deposited by ionizing radiation per kg of mass

Dose does NOT measure damage, only energy deposition

Typical treatment dose ~ 60-70 Gy

What influences damage?

Very complex topic, but mainly:

- Dose
- Type of radiation (X-rays, electrons, hadrons, etc.)
- Tissue radiosensitivity
- Oxygen concentration (up)
- Tissue cell replication (up)
- Cell differentiation (down)
- Cell cycle
- Many more...

- Measured in Sievert (Sv)
- Measures radiation damage/effect!

- Mutations, cancer, etc.
- Very very low probability

Radiation damage effects

Remember that we are continuously exposed to radiation

- Cosmic rays
- Natural radioactivity (food, soil, etc...)
- Nuclear medicine and diagnostics
- Etc...

That sounds like a lot of stuff... should we worry about this??

Radiation exposure limits

Quantity makes the poison!

- Radiation exposure is well known and strictly regulated by now
- Yearly limits for public (1 mSv) and workers (6-20 mSv) way below threshold of proven increased cancer probability (200 mSv)
- Natural background is not the same everywhere!

But what do these numbers mean?

Radiation Dose Chart

Source: https://xkcd.com/radiation/

This is a chart of the ionizing radiation dose a person can absorb from various sources. The unit for absorbed dose is "sievert" (Sv), and measures the effect a dose of radiation will have on the cells of the body. One sievert (all at once) will make you sick, and too many more will kill you, but we safely absorb small amounts of natural radiation daily. Note: The same number of sieverts absorbed in a shorter time will generally cause more damage, but your cumulative long-term dose plays a big role in things the cancer risk.

Radiation Dose Chart

Source: https://xkcd.com/radiation/

This is a chart of the ionizing radiation dose a person can absorb from various sources. The unit for absorbed dose is "sievert" (Sv), and measures the effect a dose of radiation will have on the cells of the body. One sievert (all at once) will make you sick, and too many more will kill you, but we safely absorb small amounts of natural radiation daily. Note: The same number of sieverts absorbed in a shorter time will generally cause more damage, but your cumulative long-term dose plays a big role in things the cancer risk.

Ten minutes next to the

Chernobyl reactor core after

explosion and meltdown (50 Sv)

Sources:

So now a question...

Knowing that people in Hiroshima received about 6 Gy of dose...

then why do we ask for 60-70 Gy in a normal radiation therapy treatment plan??

Dose fractionation and localisation

Total dose is fractioned and localised!!

- We don't hit the whole body of the patient
- Healthy tissue better recover the radiation damage
- Cancer cells are less efficient in reparing the damage
- Radio resistant cancer cell move to a less resistant phase of the cell cycle
- Hypoxic cancer tissue can re-oxygenate improving the radio sensitivity
- Danger of providing the dose all together

Dose (Gy)

Optimization of exposure for treatment!

Radiotherapy vs Hadrontherapy

- More dose to healthy tissues
- Less conformal dose
- Indirect damage dominant
- More dependent on oxygen effect
- Way easier to carry out

- Less dose to healthy tissues
- More conformal dose (better for OAR)
- Direct damage dominant
- Less dependent on oxygen effect
- More difficult (and expensive) to carry out

Hadrontherapy vs Radiotherapy

Hadrontherapy works!

But it is not our only weapon...

Indication	End point	Results photons	Results carbon HIMAC-NIRS	Results carbon GSI
Chordoma	local control rate	30 – 50 %	65 % Similar t	70 % o protons
Chondrosarcoma	local control rate	33 %	88 %	89 %
Nasopharynx carcinoma	5 year survival	40 -50 %	63 %	
Glioblastoma	av. survival time	12 months	16 months	Table by G. Kraft 2007
Choroid melanoma	local control rate	95 %	96 % (*)	Results of carbon
Paranasal sinuses tumours	local control rate	21 %	63 %	ions
Pancreatic carcinoma	av. survival time	6.5 months	7.8 months	
Liver tumours	5 year survival	23 %	100 %	
Salivary gland tumours	local control rate	24-28 %	61 %	77 %
Soft-tissue carcinoma	5 year survival	31 – 75 %	52 -83 %	

